
1

● Continuous Integration
● Pipelines
● Continuous Testing
● Microservices
● Continuous Delivery
● CHAOS
● Integration Issues
● Misunderstandings
● Waiting
● Blockers

My Teams Should Be
Moving Faster!

You’re adopting “DevOps” and “Microservices” because of the promise of delivering
value faster to your users/customers. But you are not seeing the gains you want to
see. You’ve got CI/CD/Pipelines/Tests/Microservices/etc… But you are still getting
bogged down with teams being dependent on the progress of each other. Service A
isn’t done, so service B cannot work on integration. The UI requires access to ALL of
the services, so it has to wait until the end to be integrated, and integration takes
WEEKS because of back-and-forth issues between the frontend and backend and
between different dependent services. This is NOT how this is supposed to work!

Many of us are familiar with writing code which other people interface with. In C & C+
+ we provide header files to tell other people what our code can do for them. In Java
it might be an Interface definition. This works great for compile-time guarantees, but
what do you do when you are writing services which work over the network or over
the web?

If you have ever written an API or service which is consumed by others, even inside
of your own team, this should be obvious. Every time you make a change to your
service, those external and internal users are going to be annoyed because you just
broke a BUNCH of their code. Take that annoyance and then consider what happens
where there are multiple (perhaps multitudes of) services and worse yet when those
APIs are consumed in the public by your customers. Add into that all of the
complexities of operating a distributed system and you have a recipe for disaster.

2

Source:
https://twitter.com/jezhumble/status/1021897540445196288

Service Architectures Are HARD

“Reminder: If you're building microservices,

you're building a distributed system.”

- Jez Humble

Lots of people have jumped on the Microservices bandwagon in recent years without
TRULY understanding what that means. They have heard that their developer teams
can achieve greater productivity, that their applications can achieve greater
scalability, that their organizations can achieve greater agility, etc… What they fail to
consider, in order to capitalize on those promises, is that they MUST fundamentally
change how their teams/customers/consumers/partners work together. JUST
implementing microservices is NOT going to achieve those goals because you are
now designing a distributed system, and those components all have to work in a
coordinated fashion. If you do not have a way for those disparate groups to
coordinate with one another asynchronously, then you still have a major bottleneck.
Your back-end devs are waiting on Database schemas and provisioning, your front-
end devs are awaiting an API to code against, your customers and partners are
awaiting documentation of those APIs in order to integrate with your services, etc….

Why You Should Be Doing Contract-
First API Development

Deven Phillips
Senior Consulting Engineer
@infosec812

3

Service Architectures Are HARD

4

Why Contract-First?

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

● Because you want to allow people to work independently

● Because you want to ensure consistency

● Because you need strong guarantees about service contracts

● Because you, your team, your colleagues, your customers, and your partners can collaborate

● Because you can save time by using code generators and testing tools

Regardless of if you find the code generation and tooling useful, having a simple
format for sharing the contracts for your services amongst all of the users of that
service is of significant value. Let’s learn a little about how simple and expressive it is
to write OpenAPI specifications.

The Traditional Workflow

Service Architectures Are HARD

5

Project Planning

The business experts spend time writing up a
project plan for a series of services and

potentially a user interface

Send To Developers

The various development teams attempt to
interpret the project plan and implement their

code so that they are compatible

Iterate And Integrate

The developer teams iteratively try to resolve
integration issues and spends lots of time

ensuring compatibility

This is a lot like traditional waterfall development of products, and as such it has lots
of bottleneck which prevent efficient progress. The project planning is a time
consuming process and often creates documents that are too vague and leave too
much room for interpretation. The developers try to consistently implement code
which is defined in the project plan, but differences of understanding and terminology
make it easy for separate teams to end up with incompatible implementations. This
results in lots of time and iterations required to resolve compatibility and integration
issues at a point very far along in the development process. Lots of re-work,
debugging, miscommunications, etc… Wouldn’t it be better if we could get faster
feedback?

What’s The Workflow?

Service Architectures Are HARD

6 Source:
https://swagger.io/docs/specification/about/
https://www.apicur.io/
https://openapi-generator.tech/

Build An API Specification

Using a tool like OpenAPI, write an API
specification FIRST

Publish The API Specification

Using a tool like Swagger or Apicur.io, publish
the API specification where others have access

and can collaborate

Generate Code Contracts

Using a tool like OpenAPI Generator, create the
API stubs for both client and server applications.

You can also generate “mock” services and
client SDK libraries!

There are a number of “Best Practices” around developing distributed services.
Things like Versioned APIs, circuit breakers, etc… Those are pretty well known, but
what seems to be less common is using a Contract-First API development approach.

The first step is to use OpenAPI to create a specification for our API. OpenAPI is
based on Swagger, which is a tool originally designed to create API documentation
from living code. It has since evolved to work either direction. You can write your
OpenAPI specification and then generate code from it, OR you can write your service
code and generate OpenAPI specifications from it.

We then publish our API specification to somewhere that our teammates, other
teams, customers, or partners can access the specification. Once you have the
specification, you can start coding against it because you KNOW what the API will
look like. It’s a contract which the service has promised to fulfill.

From that contract we can generate implementation or stub code for our services.
This means that a front-end app consuming our API can have their JavaScript or
Typescript code created AUTOMATICALLY!!! Some frameworks and toolkits are even
already OpenAPI aware, so you can just tell your application the location of your
OpenAPI contract and the REST endpoints will be wired up automatically!

What’s The Workflow?

Service Architectures Are HARD

7 Source:
https://grpc.io/
https://github.com/
https://developers.google.com/protocol-buffers/

Build An API Specification

Using a tool like gRPC, write an API specification
FIRST

Publish The API Specification

Write your specification in protoc format and
publish it to a public repository

Generate Code Contracts

Using a tool like protoc, create the API stubs for
both client and server applications. You can also

generate “mock” services and client SDK
libraries!

Another valid option for doing contract-first API development is to use gRPC:

gRPC is a modern open source high performance RPC framework that can run in
any environment. It can efficiently connect services in and across data centers with
pluggable support for load balancing, tracing, health checking and authentication. It is
also applicable in last mile of distributed computing to connect devices, mobile
applications and browsers to backend services.

gRPC specifications are written in a format called “protocol buffers” which is it’s own,
small, domain-specific language.

There are other solutions for contract-first, but OpenAPI and gRPC seem to be the
most widely adopted. Others include: RAML, RSDL, OData, APIBlueprint, I/O Docs,
Apache Avro, etc….

8

● Types

● Endpoints

● Verbs

● Parameters

● Security

● Extensions

Learning OpenAPI

Because of it’s massive amount of available tooling, we’re going to focus on OpenAPI
for now. There is significant documentation for gRPC available on-line if you should
choose to go that direction as well.

OpenAPI Basics

9

API Description:

openapi: 3.0.2
info:
 title: Petstore
 description: 'This is a sample Petstore API.'
 termsOfService: http://redhat.com/terms/
 contact:
 email: open-innovation-labs@redhat.com
 license:
 name: Apache 2.0
 url: http://apache.org/licenses/LICENSE-2.0
version: 1.0.0

openapi: 3.0.2
info:
 title: Petstore
 description: 'This is a sample Petstore API.'
 termsOfService: http://redhat.com/terms/
 contact:
 email: open-innovation-labs@redhat.com
 license:
 name: Apache 2.0
 url: http://apache.org/licenses/LICENSE-2.0
version: 1.0.0

externalDocs:
 description: Find out more about OpenAPI
 url: http://swagger.io
servers:
- url: https://petstore.swagger.io/v2
- url: http://petstore.swagger.io/v2
tags:
- name: pet
 description: Everything about your Pets
 externalDocs:
 description: Find out more
 url: http://swagger.io

externalDocs:
 description: Find out more about OpenAPI
 url: http://swagger.io
servers:
- url: https://petstore.swagger.io/v2
- url: http://petstore.swagger.io/v2
tags:
- name: pet
 description: Everything about your Pets
 externalDocs:
 description: Find out more
 url: http://swagger.io

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

OpenAPI documents are written in either YAML or JSON.

- They start with a declaration of which version of the OpenAPI specification we
are going to use to describe our API.

- The title and description are used when generating client SDKs from code
generators

- The “servers” section can be used to set up appropriate CORS and XSS
configurations

- The license lets your customers and partners know how they may re-use this
content.

Everything else here is informational and pretty much optional, though still good
practice for us to include.

OpenAPI Basics

10

Type Definitions:
components:
 schemas:
 Order:
 type: object
 required:
 - id
 - petId
 properties:
 id:
 type: string
 format: uuid
 petId:
 type: integer
 format: int64
 quantity:
 type: integer
 format: int32

components:
 schemas:
 Order:
 type: object
 required:
 - id
 - petId
 properties:
 id:
 type: string
 format: uuid
 petId:
 type: integer
 format: int64
 quantity:
 type: integer
 format: int32

 shipDate:
 type: string
 format: date-time
 status:
 type: string
 description: Order Status
 enum:
 - placed
 - approved
 - delivered
 complete:
 type: boolean
 default: false
 xml:
 name: Order

 shipDate:
 type: string
 format: date-time
 status:
 type: string
 description: Order Status
 enum:
 - placed
 - approved
 - delivered
 complete:
 type: boolean
 default: false
 xml:
 name: Order

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

In a section called “components” and a subsection called “schemas”, we can define
the data types which will be produced and consumed by our API. For example, here
we see an “Order” object defined. These schemas are defining the resources our API
will be producing/consuming.

- When defining a new type, you specify the type as “object”
- Next, you can define which fields are required to be valid
- Each field can be a primitive type or a reference to another object type, also

format
- If you wish to support XML, you can define what the top-level XML element

will be named
- Enumerated types are also supported

OpenAPI Basics

11

Endpoints:
 /store/order:
 post:
 tags:
 - store
 summary: Place an order for a pet
 operationId: placeOrder
 requestBody:
 description: order placed
 content:
 '*/*':
 schema:
 $ref: '#/components/schemas/Order'
 required: true

 /store/order:
 post:
 tags:
 - store
 summary: Place an order for a pet
 operationId: placeOrder
 requestBody:
 description: order placed
 content:
 '*/*':
 schema:
 $ref: '#/components/schemas/Order'
 required: true

 responses:
 200:
 description: successful operation
 content:
 application/xml:
 schema:
 $ref:
'#/components/schemas/Order'
 application/json:
 schema:
 $ref:
'#/components/schemas/Order'
 400:
 description: Invalid Order
 content: {}

 responses:
 200:
 description: successful operation
 content:
 application/xml:
 schema:
 $ref:
'#/components/schemas/Order'
 application/json:
 schema:
 $ref:
'#/components/schemas/Order'
 400:
 description: Invalid Order
 content: {}

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

Here we have defined a REST endpoint which handles a POST verb. The content of
the POST body is defined as accepting the “Order” type we showed in the previous
slide. We have also defined that our API consume and produces both JSON and
XML.

- The PATH for the endpoint
- The HTTP Verb for this operation
- The “operationId” is used by many code-generators to create method names

for both the server and client SDK implementations
- The content of the request is described either directly or using a reference to

a previously defined type
- Response codes and their associated bodies are defined either directly or

using a reference to a previously defined type

OpenAPI Basics

12

Parameters:
 /store/order:
 get:
 summary: Retrieve all orders
 operationId: getOrders
 parameters:
 - in: query
 name: startDate
 required: false
 schema:
 type: string
 format: datetime
 - in: query
 name: endDate
 required: false
 schema:
 type: string
 format: datetime

 /store/order:
 get:
 summary: Retrieve all orders
 operationId: getOrders
 parameters:
 - in: query
 name: startDate
 required: false
 schema:
 type: string
 format: datetime
 - in: query
 name: endDate
 required: false
 schema:
 type: string
 format: datetime

/store/order/{orderId}:
 get:
 summary: Retrieve all orders
 operationId: getOrderById
 parameters:
 - in: path
 name: orderId
 required: true
 schema:
 type: string
 format: uuid

/store/order/{orderId}:
 get:
 summary: Retrieve all orders
 operationId: getOrderById
 parameters:
 - in: path
 name: orderId
 required: true
 schema:
 type: string
 format: uuid

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

We can also specify the parameters which can be passed for various endpoints in
our API. Here we see query parameters and path parameters defined and we can
also see that some are required while others are not.

OpenAPI Basics

13

Security:
components:
 securitySchemes:
 BasicAuth:
 type: http
 scheme: basic
 BearerAuth:
 type: http
 scheme: bearer
 ApiKeyAuth:
 type: apiKey
 in: header
 name: X-API-Key
 OpenID:
 type: openIdConnect
 openIdConnectUrl: https://ex.io/oid-config

components:
 securitySchemes:
 BasicAuth:
 type: http
 scheme: basic
 BearerAuth:
 type: http
 scheme: bearer
 ApiKeyAuth:
 type: apiKey
 in: header
 name: X-API-Key
 OpenID:
 type: openIdConnect
 openIdConnectUrl: https://ex.io/oid-config

 OAuth2:
 type: oauth2
 flows:
 authorizationCode:
 authorizationUrl: https://ex.io/oauth/auth
 tokenUrl: https://ex.io/oauth/token
 scopes:
 read: Grants read access
 write: Grants write access
 admin: Grants admin access

 OAuth2:
 type: oauth2
 flows:
 authorizationCode:
 authorizationUrl: https://ex.io/oauth/auth
 tokenUrl: https://ex.io/oauth/token
 scopes:
 read: Grants read access
 write: Grants write access
 admin: Grants admin access

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

Here we have defined a REST endpoint which handles a POST verb. The content of
the POST body is defined as accepting the “Order” type we showed in the previous
slide. We have also defined that our API consume and produces both JSON and
XML.

- The PATH for the endpoint
- The HTTP Verb for this operation
- The “operationId” is used by many code-generators to create method names

for both the server and client SDK implementations
- The content of the request is described either directly or using a reference to

a previously defined type
- Response codes and their associated bodies are defined either directly or

using a reference to a previously defined type

OpenAPI Basics

14

Extensions:
 /store/order:
 post:
 tags:
 - store
 summary: Place an order for a pet
 operationId: placeOrder
 x-vertx-event-bus:
 address: com.myapp.store.order
 requestBody:
 description: order placed
 content:
 '*/*':
 schema:
 $ref: '#/components/schemas/Order'
 required: true

 /store/order:
 post:
 tags:
 - store
 summary: Place an order for a pet
 operationId: placeOrder
 x-vertx-event-bus:
 address: com.myapp.store.order
 requestBody:
 description: order placed
 content:
 '*/*':
 schema:
 $ref: '#/components/schemas/Order'
 required: true

 responses:
 200:
 description: successful operation
 content:
 application/xml:
 schema:
 $ref:
'#/components/schemas/Order'
 application/json:
 schema:
 $ref:
'#/components/schemas/Order'
 400:
 description: Invalid Order
 content: {}

 responses:
 200:
 description: successful operation
 content:
 application/xml:
 schema:
 $ref:
'#/components/schemas/Order'
 application/json:
 schema:
 $ref:
'#/components/schemas/Order'
 400:
 description: Invalid Order
 content: {}

Source:
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md

The OpenAPI specification leaves room for extension, so if you want to implement
something specific to a toolkit/framework/platform; you can. For example, here we
see a field which start with “x-”, indicating it’s an extension to the OpenAPI
specification standard. This one is specific to writing applications using Vert.x and
allows us to tell Vert.x more information about our API in order to help it integrate with
the OpenAPI spec in a way which is toolkit specific. Sometimes you will see
extensions for database schema generation, or security support systems, etc… The
OpenAPI spec can be extended without writing any custom code, but you may like to
extend OpenAPI Generator so that it can generate more/better code for your
organization and even further reduce the amount of work required.

15

● Editors

● Server Implementations

● Client Implementations

● Testing Tools

● Mocking Tools

OpenAPI Tools

There are many tools around OpenAPI which make it possible to do faster and more
asynchronous development so that teams, developers, customers, and partners can
develop clients and servers reliably.

OpenAPI Tools

16

Editors:

Source:
https://openapi.tools/

● APICurio (apicur.io)

● Swagger Editor (editor.swagger.io)

● VSCode

● IntelliJ

● Eclipse

There are a number of editors and tools which can be used to create/edit/validate an
OpenAPI specification. Red Hat actually has people working on Apicur.io, but
Swagger Editor and IDE plugins are also viable options.

OpenAPI Tools

17

Server Implementations:

Source:
https://openapi.tools/

● OpenAPI Generator

● Vert.x Web API Contract/Web API Service

● MicroTS

● @smartrecruiters/openapi-first

OpenAPI Generator can GENERATE code for a number of different platforms (Java,
JavaScript, Go, Erlang, Elixir, Typescript, Ruby, Python, etc…) and frameworks (JAX-
RS, Spring, Express, Phoenix, etc…)

Vert.x toolkit includes the ability to generate RESTful endpoints and even generate
code for Service stubs

MicroTS generates

OpenAPI Tools

18

Client Implementations:

Source:
https://openapi.tools/

● OpenAPI Generator

● Vert.x Web API Contract

● APIMATIC

● openapi-client-axios

OpenAPI Generator can GENERATE code for a number of different platforms (Java,
JavaScript, Go, Erlang, Elixir, Typescript, Ruby, Python, etc…) and frameworks (JAX-
RS, Spring, Express, Phoenix, etc…)

Vert.x toolkit includes the ability to generate client implementations in ANY of the
supported Vert.x languages (Java, JavaScript, Typescript, Clojure, Scala, Kotlin,
Groovy, etc..)

APIMatic is a SaaS solution for generating an SDK package in any number of
languages based on an OpenAPI Spec

openapi-client-axios can use an OpenAPI spec to create a fully async-enabled Axios
client for your JavaScript and Typescript applications

OpenAPI Tools

19

Testing Tools:

Source:
https://openapi.tools/

● Dredd

● Chai OpenAPI Response Validator

● hikaku

● Assertible

Dredd - Language-agnostic command-line tool for validating API
description document against backend implementation of the API

Chai OpenAPI Response Validator - Simple Chai support for asserting
that HTTP responses satisfy an OpenAPI spec.

hikaku - A library that tests if the implementation of a REST-API
meets its specification.

Assertible - Import an OpenAPI specification into Assertible to
generate tests that validate JSONSchema responses and status
codes on every endpoint.

20

● Writing A Specification

● Server Implementation

● Client Implementation

● Testing

● Mocking

Demonstration

So here’s where the rubber meets the road.

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

21

